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Wireless Evolution
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Machine Learning Evolution

Engineering of making Ability to learn
intelligent machines without being
and programs explicitly programmed
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Machine Learning Software Tools & Datasets
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Machine Learning Computational Tools

ASICs

FLEXIBILITY EFFICIEMCY

https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-deploy-fpga-web-service

From cloud
backend to

Google Cloud TPU embedded Nvidia Nano .
platforms %
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Machine Learning for Wireless
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Machine Learning/Wireless Security
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Outline

* Machine Learning
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Machine Learning - 1

 Automated means to learn from data and solve (complex) tasks.

* Far-reaching applications:
* Document classification
e Search engines
 Social media/network platforms
* Intelligence analysis applications
* Intrusion detection
* Bot detection
 Recommender systems
* Online review systems
e Spam email filtering
* Internet of Things
e Cyberphysical systems
* Autonomous driving
* Unmanned vehicle controllers
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Machine Learning - 2

* Supervised Learning
* Labeled data
* Example: Classification

* Unsupervised Learning

* No labeled data

* Example: Feature extraction
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Supervised learning

o
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Unsupervised learning

* Reinforcement Learning

Agent

Environment

* Example: Model-less learning on the fly

Observation,
Reward
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Conventional Machine Learning Algorithms

* Support Vector
Machine (SVM)

% | @]
T

—

* Decision Trees
e Random Forests
among others.
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From Machine Learning to Deep Learning

* Deep neural networks

 Algorithmic advances
(e.g., back-propagation) —
 Computational advances . .f,/
alrplane classitier;

car classifier

&

(e.g., cloud back-ends)
* Expansion of training -

data (e,g.’ SensorS)_ deer classifier

* Open-source software
(e.g., TensorFlow).

/Training N (C Testing )

e

AN 1 L/

Deep Learning
Algorithm

* Can effectively solve
complex tasks. _

ﬁ
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Common Types of Deep Neural Networks

Feedforward neural Convolutional Neural Recurrent Neural
network (FNN) Network (CNN) Network (RNN)
| +/bias .
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1 1 Output layer Convolutional MaxPooling Dense Dropout
Input layer _ ‘ ‘
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Input
data

e captures spatial * captures temporal
correlations in data correlations in data
* example: computer ) e?;a)(r)r:]ple: computer
vision VISt
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Outline

* Machine Learning for Wireless
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Wireless (Spectrum) Data is Complex

* Connectivity

* Smart City

* Smart Warehouse
Augmented/Virtual Reality

 UAV/drone Networks

* 1/Q (RF) data

* RSSI (signal strength)

* Spatial beam pattern

* Protocol performance measures
(throughout, delay, etc.)
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Wireless Tasks are Complex

Signal Analysis Waveform/Protocol Design
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Machine/Deep Learning for Wireless

* Expert knowledge & analytical solutions cannot capture complex waveforms,
channels, and resources of wireless.
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Machine/deep learning provides automated means to learn
from spectrum data and solve complex spectrum tasks.
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From Conventional ML to Deep Learning

e Conventional ML techniques fall short from capturing complex spectrum dynamics.
* Deep learning finds rich applications in wireless domain.
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Deep Learning for Wireless

Signal Detection/ Waveform/Protocol Deep Neural Networks
Classification Optimization Communication System
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Outline

* Machine Learning for 5G and Beyond
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5G as a Complex Ecosystem

* Enhanced Mobile Broadband (eMBB) * High data rate
* Virtual/Augmented Reality * High traffic volume
* Mobile Office
e Entertainment eMVIBB

* Massive Machine Type Communications (mMTC) \\
* Smart Cities 5 G

* Manufacturing

* Supply Chain/Logistics MmMMTC URLLC

* Massive number of low- * Low latency
cost devices * High reliability
* Low energy consumption

* Ultra Reliable Low Latency Communications
(URLLC)
e Autonomous Vehicles
* Emergency Services
* Healthcare

Yalin Sagduyu & Tugba Erpek 22



Advanced Capabilities Offered by 5G

* From sub-6GHz to mmWave >G Network Slices
' High Bandwidth

* Massive MIMO

| Wireless Broadband

* Multiple services on shared physical
infrastructure through network
slicing

¢ Ultra Low Latency

Real Time Control

Low Energy/
. Low Bandwidth
* Low-latency edge computing loT/Sensors
* Improved energy efficiency - U'”Z H‘ghh
: | | ™ Bandwidt
< Video Streaming

Yalin Sagduyu & Tugba Erpek 23




Beyond 5G

x100 throughput of 5G

Distributed edge cloud

Distributed data and Al

Federated and dynamic learning
Ultra high frequency spectrum
Reconfigurable intelligent surfaces
Volumetric spectrum efficiency
Software-defined network and access
Energy transfer and harvesting

Integrated terrestrial, airborne and
satellite networks

Hologram communications

Yalin Sagduyu & Tugba Erpek
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Terahertz Communications

 THz provides unprecedented rates not supported in 5G and before.
* Highly-directional and secure transmissions.

* Ultra-low latency (e.g., Augmented reality/virtual reality).
e Challenge: Link maintenance and support of high mobility.
 ML/DL for fast beam training, beam switching and handoff.

f: 300 MHz 3 GHz 30GHz 300 GHz 3THz 30TH=z 300THz

Radic microwaves THz | | IR v
" o |

N Tm 10cm Tem 1mm 100 pum 10pm T pm

Yalin Sagduyu & Tugba Erpek

25



Reconfigurable Intelligent Surfaces (RISs)

» Reflect and focus the signals towards the receivers.
* Enhance coverage in mmWave & THz systems in face of blockages.

W Rio? Determine
P
o— beam
O/ direction

Access point
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Machine Learning for 5G and Beyond
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Outline

* Adversarial Machine Learning
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Security Vulnerabilities of Machine Learning

 Tamper with the learning

process and fool deep learning ( ‘
algorithms into making errors A.‘//A“{\‘vv’é"A\\ /.
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Deep learning itself is vulnerable to attacks.
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Adversarial Machine Learning Example

* How effective learning can take place under the presence of an adversary?

e Canonical example of adversarial (evasion) attacks from computer vision:

'.' e
& — o

‘Panda’ Image Classifier

AP

‘Gibbon’ Image Classifier

adversarial
perturbation

Yalin Sagduyu & Tugba Erpek 30



Applications of Adversarial ML

* Autonomous driving

* Text classification
* Voice applications

/Training data {no poisoning) Training data Epnﬁnnedx
[ ] L]
[ ] @
[
[ ]

Backdoored slop sign
(labeled as speedlimit)

-~

K B. Biggio, F. Roli, arXiv:1712.03141.
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"The characters, cast in
impossibly contrived
situations, are totally

Input Text

estranged from reality."
2
-
F = 1 q‘
) ‘ Negative! |
SOTA NLP models

.g. BERT, LSTM, CNN)

~

"The characters, cast in
impossibly engineered
circumstances, are fully
estranged from reality."
D. Jin, et al.,

? _arXiv:1907.

' 11932.

=

"it was the
best of times,
it was the
worst of times"

| ‘ Positive!

N. Carlini, D. Wagner,
arXiv:1801.01944.

"it is a truth
universally
acknowledged
that a single"




Adversarial Machine Learning Taxonomy

1.

Exploratory attacks
 Uncover information about ML

Adversarial (evasion) attacks
* Manipulate test data for ML

Causative (poisoning) attacks
* Manipulate training data for ML

Trojan (backdoor) attacks

e Poison training data with triggers
that are activated in test time

Privacy attacks

* Model inversion attacks

* Membership inference attacks

 Attribute inference attacks

Yalin Sagduyu & Tugba Erpek
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1 — Exploratory (Inference) Attacks

classifier T

Attack steps: under attack

1. Query the classifier

2. Collect returned labels

Label: ‘Panda’
Confidence: 0.XYZ
(depending on the classifier)

3. Use 1-2 to train a surrogate
machine/deep learning model.

inferred
classifier T

N

AN

QO]
Pk e

s es
Y @ ¥ \"\\ /NS
N \
Sy Y

>\

» “Stealing” the machine learning algorithm poses a risk to the intellectual property.

* Once a classifier is stolen, the adversary is free to analyze it (with an unlimited number of
queries) to identify its potential weaknesses and its underlying functionality.

Yalin Sagduyu & Tugba Erpek 33



2 — Adversarial (Evasion) Attacks

£S5
A
s I
g
g

API

‘Gibbon’ Image Classifier

‘Panda’

adversarial
perturbation é

e Attack in test time.

e Adversary’s Goal : Select perturbation 6
(i) maximize the error probability of label data is classified as label j # i
(ii) subject to upper bound on 6

* Qutcome: The data samples will be misclassified.

Yalin Sagduyu & Tugba Erpek
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3 — Causative (Poisoning) Attacks

" L 3
&« —(w

Label:  |mage Classifier
‘Gibbon’

 Attack in training (or retraining) time.
* Data needs to gathered from different (potentially adversarial) parties.

e Adversary’s Goal: Select training data whose labels will be modified.
* Qutcome: The (re)trained model will be poor in accuracy.

Yalin Sagduyu & Tugba Erpek

35



Generative Adversarial Learning (GAN)

» Adversarial learning as a generative process (not an attack per se).

* A Generative Adversarial Network (GAN) consists of two neural networks.
e Generator network: Generate synthetic data.

* Discriminator network: Discriminate between the real and synthetic data.

* A game is played between the generator and the discriminator.

* Augment training data

(when training data is limited).
Real of Discriminator DJ¢ Real data: x
Synthetic )
* Adapt test or training data _
to other domains (for which Synﬂz;etlc data: L—Generator Gj— Noise: z
there is limited or no training data). (2)

Yalin Sagduyu & Tugba Erpek 36



Outline

* Adversarial Machine Learning for Wireless
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Adversarial Machine Learning in Wireless

* Wireless medium is open and shared.

* Adversary can eavesdrop the channel.
* Adversary can manipulate the channel by jamming or physically blocking the signal.

@

* Unique characteristics due to channel, interference, traffic, and spectrum sharing.

" AP °1°
\ ' ) th o T h
- (: ’ I
adversarial assitier QPSK adversarial ..
perturbation perturbation Classifier

 Different data samples (features and labels) at the target system and at the adversary.
* No direct manipulation of the input to a target machine learning algorithm.

Yalin Sagduyu & Tugba Erpek 38



Adversarial Attack on Wireless Signal Classifier

0 0 o Q

* A transmitter transmits signal x . T\O ecofe o
with a particular choice of modulation. o | o {/O/ \O\J : r y . 2°1°° |
« BPSK, QPSK, 8PSK, 16QAM, ... o | o wﬁ’ e

* A receiver classifies its received signal y = hy,- x + n.
* Feature: y, i.e., I/Qdata
* Label L(y) : BPSK, QPSK, 8PSK, 16-QAM, ...

e If an adversary transmits perturbation &, the receiver classifies y' = h; x + h,-6 + n.

Q

transmitter ht receiver y
r

eole o
O dah coloo
' , or Lo
©o]06 o X o eo0|0 o
o |0 O 6 g oolo o
Y. Sagduyu, T. ©o|o0 o ‘ har n
Erpek, et al., ©0 |06 o
IEEE CISS, 2020. adversary
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Adversarial Attack on Wireless Signal Classifier

* Adversary selects &

.. transmitter h receiver
to minimize ||6]|, Q tr
. X
subjectto L(h;- x+ h 6 +n) # L(h,- x +n) 5 /
2
”6”2 < Piax ‘ hor n
01 kay
o
B0 - i“"iil
e . . . . . .
2 g fway  Attack without considering h .. is ineffective.
oy
S o ‘“1,1  Classifier accuracy significantly drops when the
B N perturbation & is selected by considering h ;.
14~ no attack "‘1 o
o |-~ channel-unaware attack HH  Classifier accuracy decreases as the
-a- channel-aware attack ., perturbation-to-noise-ratio (PNR) increases.
30 -25 -20 -15  -l0 -5 '

PMNR [dE]
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Defense - 1

 Randomized smoothing during ik
e o ®
training. ol Lo
e /o || t
o A=
* To every training sample y;, add k s /L
small Gaussian noise samples /
Target classifier with | Target classifier with | Robust classifier trained
e Classifier is trained with the clean test input perturbed test input |  with perturbed data

augmented training data set: %
Vi Wi+ yi iz, yit ngl

4&.__&__ “

noise std
= 0.001

* Classifier becomes robust against
adversarial inputs in test time.

Accuracy %

—4— k=5
309 —— k=10
50 ~& k=20
Y. Sagduyu, T. Erpek, et al., k=‘ zfo -
https://arxiv.org/abs/2005.05321 10 4 ¢ Original classifier
-25 =20 =15 -10 -5 0

PNR [dB]
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Defense -2

e Certified defense in test time.

] L] t t
* Guarantee the classifier’s robustnessby -~ 2ugmented
using randomized smoothing in test time. samples

* For every test sample y;,
add k small Gaussian noise
samples and label of them with
the classifier.

* Apply two-sided hypothesis test
with the classifier outputs to
check statistical significance for a
desired confidence.

Y. Sagduyu, T. Erpek, et al.,
https://arxiv.org/abs/2005.05321

Yalin Sagduyu & Tugba Erpek
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|:> o] :> hypothesis
[ J

robust testing

classifier —4® Jffe | ® label @
[ e [

Quadrature

confidence
or not

0.015
@® Received signal with perturbation

O Randomized smoothing sample
0.010 4 PY o e
83 *a® o 8 -

0.005 ~

0.000 +

¢ oo %
fo) [0} >
o8 ?a) go .0?00&%é}.
~0.005 O'M%QQ & o®
Q6 OB eo0®
* e Co®
-0.010 ‘3.%
o

-0.015 T T T T T
-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015

In-phase

when the classifier correctly infers
the label (confidence = 0.95).

42



Extensions of Adversarial Attacks in Wireless

* Transmitted signal is unknown to the adversary (universal perturbation)
* Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.

* Target classifier is unknown to the adversary.
* Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.

* Channel information is only partially known to the adversary.
* Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321

* Multiple receivers to be fooled with a signal perturbation
* Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321

* The adversary is equipped with multiple antennas.
* Y. Sagduyu, T. Erpek, et al., IEEE Globecom, 2020.
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Other Adversarial Machine Learning Attacks

* Dynamic spectrum access (DSA)
* Anincumbent user transmits intermittently.
* A transmitter senses the channel and
transmits only when it is idle.

P .
ower Spectrum in Use

Frequency / Y ‘r

F 3

Akyidiz,
» Dynamic

etal, °
2006 /

e

Spectrum
/ Access

>

A vy ‘ Time
*“Spectrum Hole”

@ Inference (exploratory) attack
e Sense the spectrum and train a surrogate
model to mimic transmit behavior

Yalin Sagduyu & Tugba Erpek

@observe: inference attack <

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.

A

e I data ‘ACK’ or
transmission +‘n0 ACK’»l
A\ _J/
Spectrum ~N~

sensing Transmit in test phase:
jamming attack

‘ .
one time slot

Inference-based jamming attack

e Use the surrogate model to predict and jam
data transmissions that would other succeed.
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Other Adversarial Machine Learning Attacks

3 Evasion (adversarial) attack

e Jam the spectrum sensing period such that the
transmitter makes wrong transmit decisions.

@ cCausative (poisoning) attack

e Jam the spectrum sensing period such that the
transmitter makes wrong transmit decision.

Y. Sagduyu, T. Erpek, et. al, IEEE TCCN, 2020.

Yalin Sagduyu & Tugba Erpek

1. observe: inference attack <
transmit in test phase: evasion attack

@transmit in training phase: causative attack

A

- N data ‘ACK’ or
+ transmission +‘n0 ACK’»l
/
Spectrum
SCNSINg Transmit in test phase:

jamming attack

one time slot

45



Outline

* Adversarial Machine Learning for 5G and Beyond
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Attacks on 5G Radio Access Network (RAN)

1. Attacks on spectrum sharing of 5G. . ‘3) T &
e ML for environmental sensing capability (ESC). °:”°DUSErEqu.pmen'I\SGg”l]'ﬂ:hB E—ﬁ ._Y‘»
Inference
. . Attack ack on GG Causative Attack
2. Attacks to gain access to 5G-enabled services. | i ._Y‘b uthont \ ‘ ). ’
« ML for 5G signal authentication. N COVQrtSG .\ .‘Y
3) User Equipment
3. Attacks to establish covert 5G signals. -\\ @] ) > ) Arackonse
Evasion Spectrum
* ML to detect rogue 5G communications. it ))) E.—Y Sharing
asu ° 3:{“ User Equipment :;::I? ‘*n

Adversarial machine learning generates new attack surfaces for 5G.

Y. Sagduyu, T. Erpek, et al, IEEE Asilomar, 2020.
Y.. Sagduyu, T. Erpek, et al, Springer, 2020.
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AML Attack on 5G Spectrum Sharing —1

* CBRS (Citizens Broadband Radio Service) band at 3.5gHz is reserved for federal use.

e CBRS band will be opened to be shared by commercial users such as 5G.

f¢ PUBLIC NOTICE

Federal Communications Commission
445 12t Street, SW
Washington, DC 20554

News Media Information: 202-418-0500

Internet: www.fcc.gov
TTY: 888-835-5322

DA 20-1009
September 2, 2020

AUCTION OF PRIORITY ACCESS LICENSES IN THE 3550-3650 MHz BAND CLOSES
WINNING BIDDERS ANNOUNCED FOR AUCTION 105
Down Payments Due September 17, 2020
FCC Forms 601 and 602 Due September 17, 2020
Final Payments Due October 1, 2020
AU Docket No. 19-244

L. INTRODUCTION

1. On August 25, 2020, bidding concluded in Auction 105—the auction of Priority Access
Licenses (PALs) in the 3550-3650 MHz portion of the 3.5 GHz band. Auction 105 raised a total of
$4,543.232,339 in net bids ($4,585,663,345 in gross bids), with 228 bidders winning a total of 20,625
licenses.!
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from FCC:
3550 MHz 3650 MHz 3700 MHz
1. Incumbent Access 1. Incumbent Uses
Federal 2. Priority Access 2. General Authorized ESS
3. General Authorized Access
Access
10 10 1o 1 10 10 10 1 1 1o
BAHEZ MHZ MHz MHZ MHZ MHZ MHzZ MHZ MHZ MHz
- v 4
O |
auction s
Aggregate Demand
bIdS Oto 0
1t0 3
I 4 o
7Tto 7
8 to 16
: 17 to 24
b © 2020 M
>=25

https://www.mrleng.com/?page_id

=2502
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AML Attack on 5G Spectrum Sharing — 2

* Environmental Sensing Capability (ESC) needs to detect incumbent radar signals

(potentially with machine learning).

* Spectrum Access System (SAS) needs to (re)configure and manage the 5G system.

) ®

Radar

Yalin Sagduyu & Tugba Erpek

Radar
detected!”

SAS

)

“Reconfigure

(@i
il

5Gl”

)
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AML Attack on 5G Spectrum Sharing — 3

* The adversary transmits perturbations over the air to manipulate the input signal to the
ESC’s ML algorithm — evasion (adversarial) attack.

* A stealth attack with low spectrum footprint.

e ESC is fooled into making wrong decisions on the existence of the radar signal.

f (i)

“Radar ;? ]

“Reconfigure
detected!” [T eeed 5G1”

'
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AML Attack on 5G Spectrum Sharing — 4

* The adversary senses the spectrum to collect training data (I/Q data & spectrum access).

* The adversary trains a surrogate model to predict when there will be successful 5G
communication (if there was no attack).

* AML can detect all successful transmissions and most (>95%) failed transmissions.

* (L)
) | ~ mmmm) ¢

“Radar ol “Reconfigure
detected!” 2 5G1”

A
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AML Attack on 5G Spectrum Sharing — 5

* As an evasion attack, the adversary jams spectrum sensing of ESC period.

* The ESC is provided with manipulated input to its machine learning algorithm and makes
wrong decisions on the existence of radar signal.

P — = ﬂ»

“Radar ' JJ “Reconfigure [
detected!” [ .ol 5G1”
More than 5x eas J/
reduction in 5G D UE
rates compared to
. Target model
conventional
jamming of data Surrogate 4
transmissions. model ‘
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AML Attack on 5G Authentication — 1

e Devices need to connect to 5G network to gain access to 5G-enabled services, (e.g.,
through network slices).

* Massive number of heterogenous devices raise the need for PHY-layer authentication.

B >)> <(( ﬂ”ﬂ ))> gNodeB

~ ¥ “not authenticated”
~ &/ “authenticated”
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AML Attack on 5G Authentication — 2

e Adversary spoofs signals to bypass the authentication.
x Qﬁenticated”

_ Qi
V/ ‘gghenticated”

3 )

Adversary TX

* Spoofed/synthetic signals are generated by using Generative Adversarial Network (GAN).

Real or —@: Real data: x
Synthetic .
Synthetic data: L{Generator G Noise: z
G(2)
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AML Attack on 5G Authentication — 3

e Adversary transmitter-receiver pair forms an over-the-air GAN.

e Adversary transmitter is the generator and adversary receiver is the discriminator.

(D)) gocen
)

1 Generative Adversarial Network (GAN)

))) Real or Discriminator D} Real data: x
[ )

Synthetic ’
@
Adversa ry TX Adversa ry RX <:> Synthetic data: L4 Generator G Noise: z
AR -

. o G(z)
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AML Attack on 5G Authentication —4

* The GAN generator of the adversary spoofs signals that fool the gNodeB’s DL algorithm.

_ ((C[H}))) eNodes
Adversary TX ))) -

Generator ¢ ‘authorized’

O

5G Signal Probability of Fooling the

e Captures all waveform, channel L
P ’ ’ Strength  Authentication System

and radio device characteristics.

-3dB 61%
* Better than replay attacks. 0dB 67%
3dB 90%
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Defense

* The attacks have started with building a surrogate/generative model at the adversary.

* Proactive defense against 5G spoofing attacks: 5G gNodeB introduces deliberate and
selective errors in denying access to a small number of requests from intended 5G UEs.

Introduced Errors Probability

Percentage of  Attack Success <(([|==ﬂ )))
J) x|

no defense :> 0% 90% UE I
not enough 1% 68% _
defense 29 61% >>>
best defense :> 5% 59% Advesary TX .
too much 0 o ;
defense :> 10% 02%

57
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Adversarial ML for Covert 5G —1

e Adversaries can set up 5G communications in unauthorized places.

e Cooperative jammers transmit perturbations that are superimposed with rogue 5G signals.
* Even when deep learning is used, covert 5G signals cannot be detected.

_ s (0 (L)

hides 5G below //’\\ B

noise floor while
sustaining high t - )))
data rates. ))) )

Cooperative

Jammer

pectrum Guard
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Adversarial ML for Covert 5G — 2

* By considering channels, cooperative jammer determines the perturbation é such that
1. the received signal superimposed with § is misclassified as noise, and

2. covert 5G signals are reliably decoded by the gNodeB subject to interference due to 4.

Covertness |:rcI:ra;: t.: gNodeB <<( l}_:ﬂ\))) @ ((( D UE

>95% <1% W[ pectrum Guard

when & is at -5 dB | ))
relative to noise ‘)) 5 g .

Cooperative
Jammer
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Conclusion

* Machine learning finds diverse use cases in wireless communications
including 5G and beyond.

* Adversarial machine learning generates a new attack surface in wireless
domain subject to its unique characteristics.

* Wireless systems including 5G are heavily vulnerable to adversarial machine
learning.

e More work is needed to further understand this new attack surface with
additional attack modalities and corresponding defense techniques.
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THANK YOU!

FOR QUESTIONS:
Yalin Sagduyu, ysagduyu@i-a-i.com
Tugba Erpek, terpek@i-a-i.com
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Trojan (Backdoor) Attacks

e Attack in both training and test times.

* Adversary’s Goal: Select a small number of training data samples to embed with
triggers (add perturbation and flip label).

* Outcome: Only test samples with triggers are misclassified while other samples are
correctly classified.

Training Data Test Data

= ]

clean poisoned clean poisoned

label: “stop sign”  “speed sign” label: “stop sign”  “speed sign”
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Trojan (Backdoor) Attacks in Wireless - 1

* In the wireless domain, Training Data Test Data
* Trojans are harder to detect visually. V.

* Trojans can be added through phase
offsets, amplitude, etc.

* Data collection manipulation can be

clean poisoned clean poisoned
done remotely. label: “stop sign”  “speed sign” label: “stop sign”  “speed sign”
* However, triggers are harder to control
by the attacker in test time. ! fe0t ! %ot

* Needs to be done over the air.

v

clean poisoned clean poisoned
label: “QPSK” “8PSK” label: “QPSK” “8PSK”

K. Davaslioglu, Y. Sagduyu, IEEE DySPAN 20189.
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Trojan (Backdoor) Attacks in Wireless - 2

e Adversary poisons some training samples with
triggers (e.g., by adding small phase shifts).
e Adversary has two objectives:

* Increase the probability of misclassifying
poisoned samples.

* Keep the classification on clean samples high.

* The attack is stealth and successful in satisfying
both attack objectives.

* The attack forces a target signal classifier to
misclassify unauthorized signal as legitimate.

Yalin Sagduyu & Tugba Erpek
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Defense for Trojan Attacks in Wireless

1) Data augmentation with rotations (proactive):
Significantly reduces the accuracy of clean samples.
2) Statistical detection of triggers: Statistical outlier
detection using the Median Absolute Deviation
(MAD) algorithm. Performance depends on the
amount of poisoned data.
3) Clustering-based detection of triggers: t-SNE based
clustering for dimensionality reduction and SVM-
based detection. Achieves >98% accuracy.

Yalin Sagduyu & Tugba Erpek
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Privacy Attacks

Membership Inference Attack (MIA)

e Attack in test time.

* Adversary’s Goal: For a given sample, identify whether it belongs to the training data
(using the surrogate model based on the exploratory (inference) attack).

* Outcome: Leaked information to exploit vulnerabilities of the machine learning model.

Training of Target Model

. .
00,
0g00

Traming Data
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%«:}f ) W0
" A
PN . FA S,
i ‘ 1P o \\, P TRy ‘%
N

Deep Neural Network

Membership Inference Attack on Target Model

& ° Q00
tries to answer: O e O . O. ?

Training Data
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Membership Inference Attack in Wireless

* The adversary aims to infer if a signal of interest has
been used to train a wireless signal classifier or not.

e Leak information on waveform, device and channel
characteristics that are embedded in signals.

* Use the leaked information of authorized users to
generate signals that infiltrate a user authentication

system.

Yalin Sagduyu & Tugba Erpek

Training of Target Model

o
0,00,
0g00

Training Data Deep Neural Network

Membership Inference Attack on Target Model

—N
(((I))) /T Other @ . 8 . O
/ (((I))) _user tries to answer: O € O . O . ?
Traming Data
(2) S
Service ™. / D :
srovider _ l " Authorized
provite LY user
Adversary 4% i Y. Sagduyu, et al, ACM WiseSec, 2020.
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Membership Inference Attack in Wireless

» Adversary builds a surrogate classifier by monitoring the Casel
spectrum activity of users and service provider. Real \ Predicted | non-member | member
e The surrogate classifier is not exactly the same as the non-member 09152 0.0528
member 0.1429 0.8571

service provider’s classifier due to channel differences.

* Features to infer the training data membership. Case 2
. . : .
Case 1: Both phase shift and received power values. Real \ Predicted | non-member | mermber
* Case 2: Only received power values. non-member 0.5770 0.4230
* Case 3: Only phase shift values. member 0.1429 08571
* It is better to use both features together. Case 3
* Power is more important than phase shift for this attack. _Real\ Predicted | non-member | member
non-member 0.4766 0.5234
member 0.2199 0.7801
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Inference Attack for Jamming

* There is a background (primary) transmitter th"fiiCkgmundB((( ’)) /
using the channel intermittently. ((( ))) TR ))
* A transmitter senses the spectrum and ) &/
transmits when it predicts an idle channel. Recewer R
Transmitter T
* Transmitter uses a deep neural network to “tecnsmit”
predict when the channel is idle. “wait” Jammer]
* Features: Recent sensing results (RSSIs) “monitor the spectrum”
e Labels: Channelis ‘idle’ or "busy’

Throughput 0.304 packet/slot

; 0 data ‘ACK’ or

Success ratio 73.79% {ransmission +m ACK,»l
* If SNR = threshold, the ’Fransmission is spectrum
successful, and the receiver sends and ACK sensing

back to the transmitter.
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Inference Attack for Jamming

* An adversary trains a surrogate classifier
(inference attack) by observing the
spectrum.

* The adversary senses the spectrum, uses
its surrogate classifier to predict when
there will be a successful transmission,
and jams the channel.

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.

Yalin Sagduyu & Tugba Erpek

1. observe: inference attack
. transmit 1n test phase: evasion attack
3. transmit in training phase: causative attack

- - N data ‘ACK’ or
+ transmission +‘n0 ACK;l
spectrum ~~ -
jamming attack
< >

one time slot
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Steps 1-2 of the Attack (Inference Attack)

1. Jammer collects training data. 2. Jammer trains adversarial deep learning classifier.

) S /] oy
((‘ ) ) \_, >>> ((‘I’)) (%))))I

Transmitter T Recelver R T
“transmit” Ji I
“wait” Jammer J
“monitor the spectrum”

Data: Sensing Results \"; H %i“;mnsmﬁ”
Label: “ACK” or not SRR “wait”

* The adversary’s surrogate model will not be the same as the model of the transmitter.

* Different features
e Sensing results at the adversary are different from those of the transmitter due to channel differences.

 Different labels
* Transmitter classifies channel as idle or not.
 Attacker classifies the current time slot as with a successful transmission (ACK) or not.
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Step 3 of the Attack (Jamming Attack)

3. Jammer launches the attack.

* The adversary uses its surrogate model and
jams the channel when it predicts there will

be a successful transmission based on
sensing results.

T

Sensing
Results

(« I’))

(« ’)))

(( l))) W

i

“transmit”’

“wait”

Attack type Throughput | Success ratio
No attack 0.766 95.75%
Adversarial deep learning 0.050 6.25%
Sensing-based attack (7 = 3.4) 0.140 16.99%
Random attack 0.383 47.88%

Yalin Sagduyu & Tugba Erpek




Proactive Defense

* Transmitter’s classifier makes few deliberate errors.
* not transmitting even if channel is detected as idle, or
* transmitting even if channel is detected as busy.

* Adversary cannot build a reliable surrogate model.

* Defense goal: Select the number of defense actions
(add errors to samples with high classification confidence).

Pd

Jammer error probabilities

o % “transmit’
: | “wait”

Transmitter performance

Misdetection | False alarm | Throughput (packet/slot) | Success ratio
0% (no defense) 4.18% 14.53% 0.050 6.25%
increases 20% 32.80% 33.33% 0.216 31.67%
30% 33.92% 38.25% 0.194 30.41%
40% 35.83% 37.31% 0.178 31.67%
50% 38.97% 38.33% 0.170 32.32%

Yalin Sagduyu & Tugba Erpek

Best
defense
level

in terms of
throughput
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Attacks on Spectrum Sensing - 1

 Step 1: Inference attack (build a surrogate model)
e False alarm =1.98%, misdetection =4.21%

* Step 2: Evasion (adversarial) attack in test time. DN
: . / ~ data ‘ACK’ or

* Using the surrogate m.odel, jam the (short) + ransmission +«no ACKLl

spectrum sensing period such that the ‘S rum >

transmitter makes wrong transmit decisions. D —

o Sensing Transmit in test phase:
* Energy efficient and stealthy attack. jamming attack
>

one time slot

Normalized Success | All transmission
throughput 7 ratio s ratio a
no attack 08.96% 96.94 % 19.60%

75.00% 0.80% Y. Sagduyu, T. Erpek, et. al, IEEE TMC, 2020.

with attack
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Attacks on Spectrum Sensing - 2

1. observe: inference attack <
2. transmit in test phase: evasion attack

3. transmit in training phase: causative attack

 Step 3: Causative (poisoning) attack in
(re)training time (when the classifier is updated).

* Using the surrogate model, jam the spectrum N K
. . . pe Ve ~ ¢ > or
sensing period to make the updated classifier traniitizsion o ACK®
worse than before. +\ ;|< ’l
spectrum R
: : sensing Transmit in test phase:
e Different attacks can be combined. ra?;;’:;;ﬁg Zitalikase
- ' >
one time slot
Normalized Success All transmission
throughput Mty | ratio Ms, ratio M,
no attack 98.96% 96.94%, 19.60%
evasion attack 3.13% 75.00% 0.80%
jamming 41.67% 40.82% 19.60%
causative attack 87.27% 60.76% 31.60%
causative + evasion attack 2.72% 75.00% 0.80%
causative + jamming attack 37.27% 25.95% 31.60%

Yalin Sagduyu & Tugba Erpek
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Proactive Defense

* The transmitter’s classifier makes some deliberate errors.

* The adversary cannot build a reliable surrogate model.

* Defense goal: Select the number of defense actions (add errors more to samples with
high classification confidence).

Defense
increases

Yalin Sagduyu & Tugba Erpek

# of defense operations

Adx:fersary error probabﬂities

Transmitter performance

divided by # of all samples | Misdetection | False alarm | Normalized throughput | Success ratio
0% (no defense) 1.98% 4.21% 3.13% 75.00%
10% 6.99% 10.59% 15.63% 15.31%
20% 8.92% 35.29% 11.67% 28.78%
40% 10.12% 42.67% 51.04% 18.22%
60% 17.06% 69.44% 76.04% 18.07%
80% 10.88% 93.22% 56.25% 13.30%

Best
defense
level

in terms of
throughput
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Machine Learning Today

ML Software Tools ML Computation Resources

1F TensorFlow — thea L]

FLEXIBILITY EFFICIEMNCY

Kerash O PyTorch

0B 0 0 https://docs.microsoft.com/en-us/azure/machine-
[ [0 O 0 0 O T D OO

. learning/how-to-deploy-fpga-web-service

MATLAB
NN Toolbox
. From cloud
foolkit - e backend to
Google Cloud TPU embedded Nvidia Nano
platforms
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Embedded Implementation

* Implement algorithms on embedded platforms for fast decisions in microsecond-
millisecond time frame.
* FPGA, embedded GPU, and ARM.
e Support edge processing.

* Determine the most applicable platform based on the latency, accuracy and power efficiency
requirements.

Deep Learning on FPGA Fabric

Yalin Sagduyu & Tugba Erpek
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Other Adversarial Machine Learning Attacks

* Dynamic spectrum access (DSA)

® @ & ®

* Anincumbent user transmits intermittently.
* A transmitter senses the channel and
transmits only when it is idle.

Inference (exploratory) attack
e Sense the spectrum and train a surrogate
model to mimic transmit behavior

Inference-based jamming attack

* Use the surrogate model to predict and jam
data transmissions that would other succeed.

Evasion (adversarial) attack
e Jam the spectrum sensing period such that the
transmitter makes wrong transmit decisions.

Causative (poisoning) attack
e Jam the spectrum sensing period such that the
transmitter makes wrong transmit decision.

Yalin Sagduyu & Tugba Erpek

%observe: inference attack <
transmit in test phase: evasion attack

@transmit in training phase: causative attack

A

' ™ data ‘ACK’ or
+ transmission +‘n0 ACK’»l
A\ _J/
Spectrum ~N~

sensing @Transmit in test phase:

jamming attack

< - >
one time slot

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.
Y. Sagduyu, T. Erpek, et. al, IEEE TCCN, 2020.
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