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Wireless Evolution
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Machine Learning Evolution 
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Machine Learning Software Tools & Datasets

Yalin Sagduyu & Tugba Erpek

MATLAB 
NN Toolbox
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Machine Learning Computational Tools
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https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-deploy-fpga-web-service

From cloud 
backend to 
embedded 
platforms

Google Cloud TPU Nvidia Nano
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Machine Learning for Wireless 
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Machine Learning/Wireless Security
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Jamming

Adversarial Machine Learning for Wireless
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• Automated means to learn from data and solve (complex) tasks.

• Far-reaching applications:
• Document classification
• Search engines
• Social media/network platforms
• Intelligence analysis applications
• Intrusion detection
• Bot detection
• Recommender systems
• Online review systems
• Spam email filtering
• Internet of Things
• Cyberphysical systems
• Autonomous driving
• Unmanned vehicle controllers

10

Machine Learning - 1 

Yalin Sagduyu & Tugba Erpek
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Machine Learning - 2 
• Supervised Learning

• Labeled data
• Example: Classification

• Unsupervised Learning
• No labeled data
• Example: Feature extraction

• Reinforcement Learning

• Example: Model-less learning on the fly

Yalin Sagduyu & Tugba Erpek

https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle
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Conventional Machine Learning Algorithms
• Support Vector 

Machine (SVM)

• Decision Trees

• Random Forests

among others.

Yalin Sagduyu & Tugba Erpek
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From Machine Learning to Deep Learning
• Deep neural networks

• Algorithmic advances 
(e.g., back-propagation)

• Computational advances 
(e.g., cloud back-ends)

• Expansion of training 
data (e.g., sensors).

• Open-source software 
(e.g., TensorFlow).

• Can effectively solve 
complex tasks.

Yalin Sagduyu & Tugba Erpek

InputClassifier 

Testing

Deep Learning 
Algorithm

Training

Label

Input
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Common Types of Deep Neural Networks 
Feedforward neural 
network (FNN)

Yalin Sagduyu & Tugba Erpek

Convolutional Neural 
Network (CNN)

• captures spatial 
correlations in data

• example: computer 
vision

• captures temporal 
correlations in data

• example: computer 
vision

Recurrent Neural 
Network (RNN)



15

Outline

•Machine Learning

•Machine Learning for Wireless

•Machine Learning for 5G and Beyond

•Adversarial Machine Learning 

•Adversarial Machine Learning for Wireless 

•Adversarial Machine Learning for 5G and Beyond

•Conclusion

Yalin Sagduyu & Tugba Erpek



16

Wireless (Spectrum) Data is Complex

Yalin Sagduyu & Tugba Erpek
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Wireless Tasks are Complex

Signal Analysis

Yalin Sagduyu & Tugba Erpek

Waveform/Protocol Design



• Expert knowledge & analytical solutions cannot capture complex waveforms, 
channels, and resources of wireless.

18

Machine/Deep Learning for Wireless

Machine/deep learning provides automated means to learn 
from spectrum data and solve complex spectrum tasks. 

Yalin Sagduyu & Tugba Erpek

vs.



• Conventional ML techniques fall short from capturing complex spectrum dynamics.

• Deep learning finds rich applications in wireless domain.

19

From Conventional ML to Deep Learning

Yalin Sagduyu & Tugba Erpek

from high performance to embedded computing

complex RF signals 5G decisions
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Deep Learning for Wireless

Deep Neural Networks 
Communication System

Yalin Sagduyu & Tugba Erpek

Waveform/Protocol 
Optimization

Signal Detection/ 
Classification

versus
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5G as a Complex Ecosystem
• Enhanced Mobile Broadband (eMBB) 

• Virtual/Augmented Reality
• Mobile Office
• Entertainment

• Massive Machine Type Communications (mMTC)
• Smart Cities
• Manufacturing
• Supply Chain/Logistics

• Ultra Reliable Low Latency Communications 
(URLLC)

• Autonomous Vehicles
• Emergency Services
• Healthcare

eMBB

mMTC URLLC

• Massive number of low-
cost devices

• Low energy consumption

• High data rate
• High traffic volume

• Low latency
• High reliability

Yalin Sagduyu & Tugba Erpek
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Advanced Capabilities Offered by 5G
• From sub-6GHz to mmWave

• Massive MIMO 

• Multiple services on shared physical 
infrastructure through network 
slicing

• Low-latency edge computing 

• Improved energy efficiency

Yalin Sagduyu & Tugba Erpek
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Beyond 5G

Yalin Sagduyu & Tugba Erpek

• x100 throughput of 5G

• Distributed edge cloud

• Distributed data and AI

• Federated and dynamic learning

• Ultra high frequency spectrum

• Reconfigurable intelligent surfaces

• Volumetric spectrum efficiency

• Software-defined network and access

• Energy transfer and harvesting

• Integrated terrestrial, airborne and 
satellite networks

• Hologram communications
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Terahertz Communications

Yalin Sagduyu & Tugba Erpek

• THz provides unprecedented rates not supported in 5G and before.

• Highly-directional and secure transmissions. 

• Ultra-low latency (e.g., Augmented reality/virtual reality). 

• Challenge: Link maintenance and support of high mobility.

• ML/DL for fast beam training, beam switching and handoff.
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Reconfigurable Intelligent Surfaces (RISs)

Yalin Sagduyu & Tugba Erpek

• Reflect and focus the signals towards the receivers.

• Enhance coverage in mmWave & THz systems in face of blockages.

RIS

Access point
User

Determine 
beam
direction

ML/DL
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Machine Learning for 5G and Beyond
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• Tamper with the learning 
process and fool deep learning 
algorithms into making errors.

• Complex decision space of deep 
learning is sensitive to small 
adversarial inputs. 
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Security Vulnerabilities of Machine Learning

Deep learning itself is vulnerable to attacks.

Yalin Sagduyu & Tugba Erpek



• How effective learning can take place under the presence of an adversary? 

• Canonical example of adversarial (evasion) attacks from computer vision:

30

Adversarial Machine Learning Example 

‘Panda’

+

‘Panda’ Small 
adversarial 

perturbation

‘Gibbon’

Yalin Sagduyu & Tugba Erpek

Image Classifier

Image Classifier
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Applications of Adversarial ML
• Autonomous driving

• Text classification

• Voice applications

Yalin Sagduyu & Tugba Erpek

N. Carlini, D. Wagner, 

arXiv:1801.01944.

D. Jin, et al., 
arXiv:1907.
11932.

B. Biggio, F. Roli, arXiv:1712.03141.



1. Exploratory attacks
• Uncover information about ML

2. Adversarial (evasion) attacks
• Manipulate test data for ML

3. Causative (poisoning) attacks
• Manipulate training data for ML

4. Trojan (backdoor) attacks
• Poison training data with triggers 

that are activated in test time

5. Privacy attacks 
• Model inversion attacks

• Membership inference attacks 

• Attribute inference attacks

32

Adversarial Machine Learning Taxonomy

Yalin Sagduyu & Tugba Erpek
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1 – Exploratory (Inference) Attacks

Yalin Sagduyu & Tugba Erpek

Attack steps:

1. Query the classifier

2. Collect returned labels

3. Use 1-2 to train a surrogate
machine/deep learning model. 

classifier 𝑇
under attack

inferred 

classifier ෡T

Label: ‘Panda’
Confidence: 0.XYZ
(depending on the classifier)

• “Stealing” the machine learning algorithm poses a risk to the intellectual property.

• Once a classifier is stolen, the adversary is free to analyze it (with an unlimited number of 
queries) to identify its potential weaknesses and its underlying functionality.
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2 – Adversarial (Evasion) Attacks

• Attack in test time.

• Adversary’s Goal : Select perturbation 𝜹

(i) maximize the error probability of label data is classified as label 𝑗 ≠ 𝑖

(ii) subject to upper bound on 𝜹

• Outcome: The data samples will be misclassified. 

Yalin Sagduyu & Tugba Erpek

+

‘Panda’ Small 
adversarial 

perturbation 𝜹

‘Gibbon’ Image Classifier
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3 – Causative (Poisoning) Attacks

Yalin Sagduyu & Tugba Erpek

Label:
‘Gibbon’

Image Classifier

• Attack in training (or retraining) time.

• Data needs to gathered from different (potentially adversarial) parties.

• Adversary’s Goal: Select training data whose labels will be modified.

• Outcome: The (re)trained model will be poor in accuracy. 
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Generative Adversarial Learning (GAN)
• Adversarial learning as a generative process (not an attack per se).

• A Generative Adversarial Network (GAN) consists of two neural networks.

• Generator network: Generate synthetic data.

• Discriminator network: Discriminate between the real and synthetic data.

• A game is played between the generator and the discriminator.

• Augment training data
(when training data is limited).

• Adapt test or training data 
to other domains (for which                                     
there is limited or no training data).

Yalin Sagduyu & Tugba Erpek
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• Wireless medium is open and shared.

• Adversary can eavesdrop the channel.
• Adversary can manipulate the channel by jamming or physically blocking the signal. 

• Unique characteristics due to channel, interference, traffic, and spectrum sharing.

• Different data samples (features and labels) at the target system and at the adversary.
• No direct manipulation of the input to a target machine learning algorithm. 
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Adversarial Machine Learning in Wireless

Yalin Sagduyu & Tugba Erpek
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Adversarial Attack on Wireless Signal Classifier
• A transmitter transmits signal 𝒙

with a particular choice of modulation.

• BPSK, QPSK, 8PSK, 16QAM, …

• A receiver classifies its received signal 𝒚 = 𝒉𝑡𝑟 𝒙 + 𝒏.

• Feature: 𝒚 , i.e., I/Q data

• Label 𝐿(𝒚) : BPSK, QPSK, 8PSK, 16-QAM, …

• If an adversary transmits perturbation 𝜹, the receiver classifies 𝒚′ = 𝒉𝑡𝑟 𝒙 + 𝒉𝑎𝑟𝜹 + 𝒏.

Yalin Sagduyu & Tugba Erpek

Y. Sagduyu, T. 
Erpek, et al., 
IEEE CISS, 2020.

transmitter receiver

adversary

𝒙

𝜹
𝒉𝑎𝑟

𝒉𝑡𝑟

𝒏

or                        ?
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Adversarial Attack on Wireless Signal Classifier
• Adversary selects 𝜹

to minimize   𝜹 𝟐

subject to  𝐿 𝒉𝑡𝑟 𝒙 + 𝒉𝑎𝑟𝜹 + 𝒏 ≠ 𝐿 𝒉𝑡𝑟 𝒙 + 𝒏

𝜹 𝟐
𝟐 ≤ 𝑷𝒎𝒂𝒙

Yalin Sagduyu & Tugba Erpek

transmitter receiver

adversary

𝒙

𝜹
𝒉𝑎𝑟

𝒉𝑡𝑟

𝒏

no attack
channel-unaware attack
channel-aware attack

• Attack without considering 𝒉𝑎𝑟 is ineffective. 

• Classifier accuracy significantly drops when the 
perturbation 𝜹 is selected by considering 𝒉𝑎𝑟. 

• Classifier accuracy decreases as the 
perturbation-to-noise-ratio (PNR) increases.
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Defense - 1
• Randomized smoothing during 

training.

• To every training sample 𝒚𝒊, add k
small Gaussian noise samples            

• Classifier is trained with the 
augmented training data set:

• Classifier becomes robust against 
adversarial inputs in test time.

Yalin Sagduyu & Tugba Erpek

noise std 
= 0.001

Target classifier with 
clean test input

Target classifier with 
perturbed test input

Robust classifier trained 
with perturbed data

𝒚𝒊 → 𝒚𝒊 + 𝒏𝒊,𝟏, 𝒚𝒊 + 𝒏𝒊,𝟐, ⋯ 𝒚𝒊+ 𝒏𝒊,𝒌

Madry, 
2017

Y. Sagduyu, T. Erpek, et al., 
https://arxiv.org/abs/2005.05321
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Defense -2 
• Certified defense in test time.

• Guarantee the classifier’s robustness by 
using randomized smoothing in test time.

Yalin Sagduyu & Tugba Erpek

when the classifier abstains. when the classifier correctly infers 
the label (confidence = 0.95).

Y. Sagduyu, T. Erpek, et al., 
https://arxiv.org/abs/2005.05321

• For every test sample 𝒚𝒊,                                                                                                            
add k small Gaussian noise 
samples and label of them with 
the classifier.           

• Apply two-sided hypothesis test 
with the classifier outputs to 
check statistical significance for a 
desired confidence.

test 
sample

augmented 
set of test 
samples

robust 
classifier label

hypothesis 
testing

confidence 
or not
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Extensions of Adversarial Attacks in Wireless
• Transmitted signal is unknown to the adversary (universal perturbation)

• Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.

• Target classifier is unknown to the adversary.
• Y. Sagduyu, T. Erpek, et al., IEEE CISS, 2020.

• Channel information is only partially known to the adversary.
• Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321

• Multiple receivers to be fooled with a signal perturbation
• Y. Sagduyu, T. Erpek, et al., https://arxiv.org/abs/2005.05321

• The adversary is equipped with multiple antennas. 
• Y. Sagduyu, T. Erpek, et al., IEEE Globecom, 2020.

Yalin Sagduyu & Tugba Erpek
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Other Adversarial Machine Learning Attacks
• Dynamic spectrum access (DSA)

• An incumbent user transmits intermittently.
• A transmitter senses the channel and 

transmits only when it is idle.

Inference (exploratory) attack
• Sense the spectrum and train a surrogate 

model to mimic transmit behavior 

Yalin Sagduyu & Tugba Erpek

1

Akyidiz, 
et al, 
2006

1

2

1. Inference-based jamming attack
• Use the surrogate model to predict and jam 

data transmissions that would other succeed.  

2

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.
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Other Adversarial Machine Learning Attacks
1. Evasion (adversarial) attack

• Jam the spectrum sensing period such that the 
transmitter makes wrong transmit decisions.

2. Causative (poisoning) attack

• Jam the spectrum sensing period such that the 
transmitter makes wrong transmit decision.

Yalin Sagduyu & Tugba Erpek

Y. Sagduyu, T. Erpek, et. al, IEEE TCCN, 2020.

3
4

3

4
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1.Attacks on spectrum sharing of 5G.
• ML for environmental sensing capability (ESC).

2.Attacks to gain access to 5G-enabled services.
• ML for 5G signal authentication.

3.Attacks to establish covert 5G signals.
• ML to detect rogue 5G communications.

47

Attacks on 5G Radio Access Network (RAN)

Yalin Sagduyu & Tugba Erpek

Adversarial machine learning generates new attack surfaces for 5G.

Y. Sagduyu, T. Erpek, et al, IEEE Asilomar, 2020.
Y. . Sagduyu, T. Erpek, et al, Springer, 2020.



• CBRS (Citizens Broadband Radio Service) band at 3.5gHz is reserved for federal use.

• CBRS band will be opened to be shared by commercial users such as 5G.

48

AML Attack on 5G Spectrum Sharing – 1 

from FCC:

Yalin Sagduyu & Tugba Erpek

https://www.mrleng.com/?page_id=2502

CBRS 
auction 
bids:



• Environmental Sensing Capability (ESC) needs to detect incumbent radar signals 
(potentially with machine learning).

• Spectrum Access System (SAS) needs to (re)configure and manage the 5G system. 
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AML Attack on 5G Spectrum Sharing – 2

Radar

ESC

“Radar 
detected!”

SAS

“Reconfigure 
5G!”

Yalin Sagduyu & Tugba Erpek



• The adversary transmits perturbations over the air to manipulate the input signal to the  
ESC’s ML algorithm – evasion (adversarial) attack.

• A stealth attack with low spectrum footprint. 

• ESC is fooled into making wrong decisions on the existence of the radar signal.

50

AML Attack on 5G Spectrum Sharing – 3 

Radar

ESC

“Radar 
detected!”

SAS

“Reconfigure 
5G!”

UE

Yalin Sagduyu & Tugba Erpek



• The adversary senses the spectrum to collect training data (I/Q data & spectrum access).

• The adversary trains a surrogate model to predict when there will be successful 5G 
communication (if there was no attack).

• AML can detect all successful transmissions and most (>95%) failed transmissions.
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AML Attack on 5G Spectrum Sharing – 4 

Yalin Sagduyu & Tugba Erpek

Radar

ESC

“Radar 
detected!”

SAS
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Target model
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UE



• As an evasion attack, the adversary jams spectrum sensing of ESC period. 

• The ESC is provided with manipulated input to its machine learning algorithm and makes 
wrong decisions on the existence of radar signal.
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AML Attack on 5G Spectrum Sharing – 5 

Yalin Sagduyu & Tugba Erpek

Radar

ESC

“Radar 
detected!”

SAS

“Reconfigure 
5G!”

Target model

More than 5x 
reduction in 5G 
rates compared to 
conventional 
jamming of data 
transmissions.

Surrogate 
model

UE



• Devices need to connect to 5G network to gain access to 5G-enabled services, (e.g., 
through network slices).

• Massive number of heterogenous devices raise the need for PHY-layer authentication.
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AML Attack on 5G Authentication – 1 

Yalin Sagduyu & Tugba Erpek

UE

gNodeB

“not authenticated”

“authenticated”



• Adversary spoofs signals to bypass the authentication.

• Spoofed/synthetic signals are generated by using Generative Adversarial Network (GAN). 
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AML Attack on 5G Authentication – 2

Yalin Sagduyu & Tugba Erpek

gNodeB

Adversary TX

“not authenticated”

“authenticated”



• Adversary transmitter-receiver pair forms an over-the-air GAN.

• Adversary transmitter is the generator and adversary receiver is the discriminator. 
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AML Attack on 5G Authentication – 3

Yalin Sagduyu & Tugba Erpek

UE

gNodeB

Adversary TX Adversary RX

Generative Adversarial Network (GAN)



• The GAN generator of the adversary spoofs signals that fool the gNodeB’s DL algorithm. 

• Captures all waveform, channel,                                                                                              
and radio device characteristics.

• Better than replay attacks.
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AML Attack on 5G Authentication – 4

Yalin Sagduyu & Tugba Erpek

gNodeB

Adversary TX

Generator

5G Signal 
Strength

Probability of Fooling the 
Authentication System

-3dB 61%

0dB 67%

3dB 90%

`authorized’



• The attacks have started with building a surrogate/generative model at the adversary.

• Proactive defense against 5G spoofing attacks: 5G gNodeB introduces deliberate and 
selective errors in denying access to a small number of requests from intended 5G UEs.

57

Defense

UE

gNodeB

Adversary TX Adversary RX

Percentage of 
Introduced Errors

Attack Success 
Probability

0% 90%

1% 68%

2% 61%

5% 59%

10% 62%

Yalin Sagduyu & Tugba Erpek

no defense

not enough 
defense

too much 
defense

best defense



• Adversaries can set up 5G communications in unauthorized places. 

• Cooperative jammers transmit perturbations that are superimposed with rogue 5G signals.

• Even when deep learning is used, covert 5G signals cannot be detected. 
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Adversarial ML for Covert 5G – 1

UE
gNodeB

Cooperative 
Jammer

𝜹

Adversarial ML 
hides 5G below 
noise floor while 
sustaining high 
data rates.

Yalin Sagduyu & Tugba Erpek

Spectrum Guard



• By considering channels, cooperative jammer determines the perturbation 𝜹 such that 

1. the received signal superimposed with 𝜹 is misclassified as noise, and

2. covert 5G signals are reliably decoded by the gNodeB subject to interference due to 𝜹.
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Adversarial ML for Covert 5G – 2

UEgNodeBCovertness Increase in 
Error Rate

>95% <1%

when 𝜹 is at -5 dB 
relative to noise 

Yalin Sagduyu & Tugba Erpek

Cooperative 
Jammer

𝜹

Spectrum Guard



• Machine learning finds diverse use cases in wireless communications 
including 5G and beyond.

• Adversarial machine learning generates a new attack surface in wireless 
domain subject to its unique characteristics.

• Wireless systems including 5G are heavily vulnerable to adversarial machine 
learning.

• More work is needed to further understand this new attack surface with 
additional attack modalities and corresponding defense techniques.

60

Conclusion

Yalin Sagduyu & Tugba Erpek
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THANK YOU!

FOR QUESTIONS:

Yalin Sagduyu, ysagduyu@i-a-i.com

Tugba Erpek, terpek@i-a-i.com
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Trojan (Backdoor) Attacks
• Attack in both training and test times. 

• Adversary’s Goal: Select a small number of training data samples to embed with 
triggers (add perturbation and flip label).

• Outcome: Only test samples with triggers are misclassified while other samples are 
correctly classified.

Yalin Sagduyu & Tugba Erpek
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Trojan (Backdoor) Attacks in Wireless - 1
• In the wireless domain, 

• Trojans are harder to detect visually.

• Trojans can be added through phase 
offsets, amplitude, etc. 

• Data collection manipulation can be 
done remotely. 

• However, triggers are harder to control 
by the attacker in test time.

• Needs to be done over the air. 

Yalin Sagduyu & Tugba Erpek

K. Davaslioglu, Y. Sagduyu, IEEE DySPAN 2019.
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Trojan (Backdoor) Attacks in Wireless - 2
• Adversary poisons some training samples with 

triggers (e.g., by adding small phase shifts).

• Adversary has two objectives:

• Increase the probability of misclassifying 
poisoned samples.

• Keep the classification on clean samples high.

• The attack is stealth and successful in satisfying 
both attack objectives.

• The attack forces a target signal classifier to 
misclassify unauthorized signal as legitimate. 

Yalin Sagduyu & Tugba Erpek



65

Defense for Trojan Attacks in Wireless
1) Data augmentation with rotations (proactive): 

Significantly reduces the accuracy of clean samples. 

2) Statistical detection of triggers: Statistical outlier 
detection using the Median Absolute Deviation 
(MAD) algorithm. Performance depends on the 
amount of poisoned data. 

3) Clustering-based detection of triggers: t-SNE based 
clustering for dimensionality reduction and SVM-
based detection. Achieves >98% accuracy.

Yalin Sagduyu & Tugba Erpek
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Privacy Attacks
Membership Inference Attack (MIA)

• Attack in test time. 

• Adversary’s Goal: For a given sample, identify whether it belongs to the training data
(using the surrogate model based on the exploratory (inference) attack).

• Outcome: Leaked information to exploit vulnerabilities of the machine learning model.

Yalin Sagduyu & Tugba Erpek
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Membership Inference Attack in Wireless
• The adversary aims to infer if a signal of interest has 

been used to train a wireless signal classifier or not.

• Leak information on waveform, device and channel 
characteristics that are embedded in signals.

• Use the leaked information of authorized users to 
generate signals that infiltrate a user authentication 
system.

Yalin Sagduyu & Tugba Erpek

Y. Sagduyu, et al, ACM WiseSec, 2020.
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Membership Inference Attack in Wireless
• Adversary builds a surrogate classifier by monitoring the 

spectrum activity of users and service provider. 
• The surrogate classifier is not exactly the same as the 

service provider’s classifier due to channel differences.

• Features to infer the training data membership.

• Case 1: Both phase shift and received power values.

• Case 2: Only received power values.

• Case 3: Only phase shift values.

• It is better to use both features together.

• Power is more important than phase shift for this attack.

Yalin Sagduyu & Tugba Erpek

Case 1 

Case 2 

Case 3 
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Inference Attack for Jamming 
• There is a background (primary) transmitter 

using the channel intermittently.

• A transmitter senses the spectrum and 
transmits when it predicts an idle channel.

• Transmitter uses a deep neural network to 
predict when the channel is idle.
• Features: Recent sensing results (RSSIs) 

• Labels: Channel is `idle’ or `busy’

• Throughput 0.304 packet/slot

• Success ratio 73.79%

• If SNR ≥ threshold, the transmission is 
successful, and the receiver sends and ACK 
back to the transmitter.

Yalin Sagduyu & Tugba Erpek
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Inference Attack for Jamming 
• An adversary trains a surrogate classifier 

(inference attack) by observing the 
spectrum.

• The adversary senses the spectrum, uses 
its surrogate classifier to predict when 
there will be a successful transmission, 
and jams the channel.

Yalin Sagduyu & Tugba Erpek

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.
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Steps 1-2 of the Attack (Inference Attack)

Yalin Sagduyu & Tugba Erpek

• The adversary’s surrogate model will not be the same as the model of the transmitter.

• Different features
• Sensing results at the adversary are different from those of the transmitter due to channel differences. 

• Different labels
• Transmitter classifies channel as idle or not.
• Attacker classifies the current time slot as with a successful transmission (ACK) or not.
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Step 3 of the Attack (Jamming Attack)

Yalin Sagduyu & Tugba Erpek

• The adversary uses its surrogate model and 
jams the channel when it predicts there will 
be a successful transmission based on 
sensing results.
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Proactive Defense
• Transmitter’s classifier makes few deliberate errors.

• not transmitting even if channel is detected as idle, or

• transmitting even if channel is detected as busy.

• Adversary cannot build a reliable surrogate model.

• Defense goal: Select the number of defense actions    
(add errors to samples with high classification confidence).

Yalin Sagduyu & Tugba Erpek

Defense
increases

Best 
defense
level 

in terms of 
throughput
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Attacks on Spectrum Sensing - 1

• Step 1: Inference attack (build a surrogate model)

• False alarm = 1.98%,  misdetection = 4.21%

• Step 2: Evasion (adversarial) attack in test time.

• Using the surrogate model, jam the (short) 
spectrum sensing period such that the 
transmitter makes wrong transmit decisions.

• Energy efficient and stealthy attack.

Yalin Sagduyu & Tugba Erpek

Training A’s classifier

Y. Sagduyu, T. Erpek, et. al, IEEE TMC, 2020.
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Attacks on Spectrum Sensing - 2

Yalin Sagduyu & Tugba Erpek

• Step 3: Causative (poisoning) attack in 
(re)training time (when the classifier is updated).

• Using the surrogate model, jam the spectrum 
sensing period to make the updated classifier 
worse than before.

• Different attacks can be combined.
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Proactive Defense
• The transmitter’s classifier makes some deliberate errors.

• The adversary cannot build a reliable surrogate model.

• Defense goal: Select the number of defense actions  (add errors more to samples with 
high classification confidence).

Yalin Sagduyu & Tugba Erpek

Defense
increases

Best 
defense
level 

in terms of 
throughput



78



79

Machine Learning Today

Yalin Sagduyu & Tugba Erpek

ML Software Tools 

MATLAB 
NN Toolbox

ML Computation Resources

https://docs.microsoft.com/en-us/azure/machine-
learning/how-to-deploy-fpga-web-service

From cloud 
backend to 
embedded 
platforms

Google Cloud TPU Nvidia Nano



• Implement algorithms on embedded platforms for fast decisions in microsecond-
millisecond time frame.

• FPGA, embedded GPU, and ARM.

• Support edge processing.

• Determine the most applicable platform based on the latency, accuracy and power efficiency 
requirements. 
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Embedded Implementation

Yalin Sagduyu & Tugba Erpek
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Other Adversarial Machine Learning Attacks
• Dynamic spectrum access (DSA)

• An incumbent user transmits intermittently.
• A transmitter senses the channel and 

transmits only when it is idle.

1. Inference (exploratory) attack
• Sense the spectrum and train a surrogate 

model to mimic transmit behavior 

2. Inference-based jamming attack
• Use the surrogate model to predict and jam 

data transmissions that would other succeed.  

3. Evasion (adversarial) attack
• Jam the spectrum sensing period such that the 

transmitter makes wrong transmit decisions.

4. Causative (poisoning) attack
• Jam the spectrum sensing period such that the 

transmitter makes wrong transmit decision.

Yalin Sagduyu & Tugba Erpek

T. Erpek, Y. Sagduyu, et. al, IEEE TCCN, 2019.
Y. Sagduyu, T. Erpek, et. al, IEEE TCCN, 2020.
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